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Human Immunodeficiency Virus (HIV-1) currently affects over 36 million people worldwide. To date,
the only practical treatment for HIV is life-long administration of combinations of antiretrovirals
which target different phases of viral life cycle. Despite the development of new antiretrovirals,
every treatment ultimately fails due to the high evolutionary dynamics of the virus, which enable it
to escape to resistance by accumulating resistance mutations. This, together with the large number
of potential therapy combinations, makes manually searching for an effective therapy challenging,
especially for patients with long treatment histories.

The vast majority of computational approaches developed to meet this challenge are based on
regression [1]]. These map elements of a patient’s history directly to some output, such as virological
response, and use this to infer appropriate treatments. Recently, [2] present a kernel-based method
for predicting treatment outcome based on a patient’s treatment history. The premise is that patients
with similar treatment histories may respond similarly. Unfortunately, none of these approaches
directly address the sequential nature of the therapy selection process — that a choice of combination
now might result in drug-resistant viral strains which may be harder to control later. Reinforcement
learning approaches, such as [3] and [7], make this sequential nature explicit: they output a treatment
policy that chooses therapy combinations not only to optimise virological response in the present, but
also in the future. However, these approaches are fragile since they reason about futures on the basis
of limited data. Moreover, the heterogeneity in patient data makes it difficult for one particular model
to succeed at providing suitable therapy predictions for all patients.

To overcome these problems, we present a mixture-of-experts approach [S]] that combines the
strengths of both kernel-based regression methods and reinforcement learning for HIV therapy
selection. Kernel-based regression methods excel when there are clusters of similar patients: they
can model patient-specific aspects in viral response. However, their prediction quality drops when
patients are not part of a tight cluster. On the other hand, model-based methods first build a model
to reason about how well a series of therapy selections will perform. These approaches tend to
find simpler, more robust patterns of response — a better alternative for patients outside of clusters.
The mixture-of-experts approach automatically selects between these two options, depending on a
patient’s particular situation.

Our contributions are as follows: we show that optimising for an immediate reduction in viral load
does not control mutations or viral loads in the future. We demonstrate that the therapy combinations
proposed by our treatment policy outperform previous methods. Finally, we support our claim that
the kernel-based approach is used when a patient lies in a cluster, while the model-based approach is
used for patients with few neighbours. In summary, this suggests that more nuanced approaches are
required to make optimal treatment recommendations for patients with HIV.
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1 Model

We propose a mixture-of-experts for HIV therapy selection. Our first expert modifies the history
alignment model due to [2] to optimise long-term outcomes rather than immediate outcomes. Our
second expert is a Bayesian Partially Observable Markov Decision Process (POMDP). Combining
these approaches allows us to learn reasonable choices of therapy for individual patients, specific to
their situations.

Cohorts We make use of a subset of the EuResist database consisting of HIV genotype and
treatment response data for 32 960 patients, together with their corresponding CD4* and viral load
measurements, gender, age, risk group, and number of past treatments recorded. We limit ourselves
to the 312 most common drug combinations that occur in the cohort. The database has previously
been used to build models such as the therapy alignment model, to predict the outcome of a particular
therapy [13} [9]. We are however, specifically interested in optimising the therapy choice for a
particular patient.

Long-term Reward Criterion Following [3] [7], we propose the following immediate reward
function:

_ [—0.7log Vi +0.6log T} — 0.2| M|, if V; is above detection limits
15406 log Ty — 0.2| M|, if V; is below detection limits,

where V; is the viral load (in copies/mL), T} is the CD4 ™ count (in cells/mL), and | M| is the number
of mutations at time ¢ respectively. This function penalises instances where a patient’s viral load
increases and rewards instances where a patient’s CD4* count increases (more weight is placed on
the viral load, as it is an earlier indicator of whether a therapy is working). We also penalise on the
basis of the number of mutations a patient has at a particular time, as these may ultimately contribute
to resistance and therapy failure. There is also a bonus for if the viral load is below detectable limits
as this is something we would like to sustain over time. The long-term reward criterion sums these
immediate rewards over the patient’s history.

Kernel-based History Alignment It is well-established that a patient’s prior history is a key factor
for predicting the efficacy of HIV treatment [[11}[10]. [2] use this fact in a history alignment model
that measures the similarity between two therapy sequence Two therapy sequences are considered
to be similar if they consist of similar drug combinations, are administered in a similar order, and
produce similar genomic fingerprints in the viral population. If two patients have similar histories,
[2] demonstrate that they often respond similarly to treatment.

The history-alignment model first uses a resistance mutations kernel to quantify the pairwise sim-
ilarities between different therapy combinations. The kernel assumes that similarity between the
different drug groups is additive, since drugs belonging to different groups have different therapeutic
targets and could thus be assumed to act independently. The pairwise similarity between two drug
combinations, z and 2’ is given by averaging the similarities of their corresponding drug groups g:
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where u.4 and u./, are binary vectors of resistance relevant mutations occurring in drug group g of z
and 2’ respectively.

With this similarity measure between drug combinations, [2] then compute a similarity score between
therapy sequences via the Needleman-Wunsch sequence alignment algorithm [6]. The alphabet for
the sequence comprises the distinct drug combinations in the data set, while the mutations kernel in
Equation [T|determines the pairwise similarities between the characters of the alphabet. The score
from the alignment similarity kernel, together with the viral genotype and drug history information,
can then be used to train a regression model for predicting the outcome of a therapy in terms of
success or failure. [2] define a therapy as successful if that patient’s viral load falls below 400
copies/mL after 21 days of treatment under the therapy. We replace this success criteria with the

!The combinations of drugs a patient takes at a particular time is defined as a therapy. A therapy sequence
refers to a sequence of such combinations over time.



potential long-term value of a therapy choice. First, we convert the binary problem of ‘Will this drug
combination succeed?’ into a multi-class problem of ‘Which drug combination should I choose?’.
Second, and more importantly, this prediction is made by summing the long-term reward criterion
over all the time-steps in the patient’s future history. We call this treatment policy the ‘Long-Term
History Alignment’ model.

Bayesian POMDP The HIV therapy selection problem involves making a sequence of decisions
with long-term consequences. Reinforcement learning formalises this process as a series of exchanges
between an agent and its environment. At each time step, the agent selects an action a (such as a
drug combination) and the environment returns some observations o (e.g. CD4 counts, viral loads,
mutations) as well as an immediate reward r (e.g. whether the viral load drops below a desired
threshold). Given a history of length ¢, h = {a1, 01,71 ..., as, 0,74 }, the agent’s goal is to choose
the subsequent action such that it maximises discounted sum of its expected rewards, E[ ", v:7¢],
where -y € [0, 1) trades off between current and future rewards.

A POMDP m is defined by a finite set of hidden states S, actions .4 and observations O. A transition
function T'(s'|s, a) specifies the probability of transitioning from state s to s’ when taking an action
a. Similarly, an observation function Q(o|s, a) specifies the probability of observing o from state
s when taking action a. The reward function R : & x A — R specifies the immediate reward that
an agent receives upon performing an action from a particular state. Evidently, the true state of a
patient corresponding to their underlying health status may not be directly observable. We limit our
actions to the 312 most common drug combinations in the cohort and learn a model with 7 hidden
physiological states. Our observation space consists of (a) binning the values of the viral load using a
log scale of [0.0, 1.0, 10.0, 1000, 10000, 10M, 100M] copies/ML, (b) 70 resistance mutations that
may occur as a result of a particular therapy together with a patient’s CD4™" count, gender, risk group.
We treat the parameters for the transitions and observations in a Bayesian fashion by placing Dirichlet
priors on them. Inference here, entails sampling multiple models of the parameters and updating the
agent’s beliefs about the patient state accordingly.

We model time in discrete increments of 6 months, and perform a forward search for therapy choices
that optimise outcomes over a 5 year horizon (10 total steps). In our results, we evaluate the
performance of each of the methods using three off-policy evaluation schemes: importance sampling
[8]], weighted importance sampling [[12], and doubly robust evaluation [4].

2 Results and Discussion

Doubly Robust Importance Sampling Weighted Importance

Random Policy 231+ 142 -3.48 +1.36 -2.80 + 1.27
Short-term History Alignment 2.17 +1.47 2.14 +1.22 2.15 +1.16
Long-term History Alignment 9.48 + 1.90 5424193 6.74 + 1.89

POMDP 6.34 +2.15 4.36 +2.38 6.76 + 2.24
Mixture-of-experts 11.47 + 1.38 12.25 + 141 11.23 +1.40

Table 1: Off-Policy evaluation using importance sampling, weighted importance sampling and doubly
robust methods for different therapy selection models.

Table [I| compares the performance of the history alignment method, the POMDP and the mixture-of-
experts against a random policy where a completely random therapy choice is made. A higher value
indicates a better performing treatment policy.

Optimising for long-term health produces different treatment policies than predicting the most
common next therapy Table|l{shows that the short-term history alignment model achieves signifi-
cantly worse rewards than the long-term history alignment model (and the POMDP). These results
suggest that treatments which may initially appear attractive may result in poor patient outcomes at a
later stage—unsurprising to many in HIV. Specifically, resistance against a particular drug may lead
to cross-resistance against another, leading to long-term dependencies in therapy response.



The mixture-of-experts produces the best treatment policies. The mixture-of-experts approach
outperforms the other approaches across all evaluation schemes. While the POMDP performs
worse than the long-term alignment kernel in general, the fact that the mixture of experts approach
outperforms both the POMDP and alignment kernel suggests that these models are making mistakes
in different places—and thus we can do better by choosing between the two. A post-hoc investigation
reveals that the mixture-of-experts chooses the POMDP model approximately 26% of the time in
comparison to the alignment kernel.

The mixture-of-experts chooses experts based on clustering characteristics. We follow up on
our clustering hypothesis: when is each model being chosen? Specifically, we consider role that a
patient’s history and the lower quantile of their distance to other patients plays here. Figure[I] (a)
and (b) provide box plot illustrations of the values of the latter features in relation to the choice of
model selected by the mixture-of-experts. As the lower quantile of the distance between a patient and
their neighbours increases, the POMDP is more likely to become the model of choice. Moreover,
the length of a patient’s therapy history seems to play a defining role in the choice of expert. The
mixture-of-experts selects the POMDP for patients with longer history lengths and the alignment
kernel for the others. This is likely because as a patient’s treatment history increases in length, they
become more unique and have smaller similarity values relative to other patients in the kernel. Here
the POMDP is the model of choice, possibly because it is able to incorporate this rich history into its
belief state, while the alignment kernel cannot capture the same level of information.
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Figure 1: Mixture-of-experts model choice over (a) distances to closest neighbour and, (b) varying
history lengths.

3 Conclusion

We showed how kernel methods and model-based RL can be combined for HIV therapy selection
using a mixture-of-experts approach. This enabled us to account for heterogeneity in patient data, that
typically makes it difficult for a single model to provide reasonable therapy predictions for individuals.
Specifically, we showed that the kernel approach is optimal for patients with short treatment histories;
the model-based method proved more suited to patients with long treatment histories and rare therapy
combinations. These are patients that have been heavily pre-treated. We attribute this difference to
the way in which each model uses a patient’s history: the POMDP incorporates knowledge about
a patient’s history implicitly through its beliefs and actions, each influenced by past observations,
treatments and mutations, while the history alignment method only uses patient’s treatment history
from the kernel, and does not account for observations that occur further back in time. By combining



the methods, we are able to automate the task of selecting an appropriate model for a particular
patient. In this way, we draw on the strengths of each approach, and eliminate the need to choose
between the methods. This ultimately aids in improved decision-making.
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