Motivation

Human Immunodeficiency Virus (HIV) infects immune cells and causes AIDS. The Immediate reward criterion: virus is highly mutagenic, so choosing a therapy is difficult. $-0.7 \log V_t + 0.6 \log T_t - 0.2 |M|$, if V_t is above detection limits $r_t = \langle$ $5 + 0.6 \log T_t - 0.2 |M|,$ otherwise Long-term success sums criterion over patient's future history. **Combination therapy** is prescribed to overcome drug resistance. Existing therapy selection approaches based on regression are problematic: **Bayesian POMDP** • Do not account for **long-term** effects of therapies. Models **sequential decision-making** explicitly. Do not account for patient heterogeneity. 6 month time increments Trade-off between model generality vs specificity. • 7 hidden physiological states; 70 mutations and binned viral RNA values Transition and observation parameters drawn from Dirichlet • Sample *m* models and update beliefs accordingly. How do we know what action to choose? $k(z,z') = \sum \, \frac{ {\rm sim}_g(z,z') }{$ • Build forward search tree: Search therapies to optimise outcomes over 5 years. Evaluate policies with off-policy evaluation. Long-Term Alignment Bayesian POMDP Data Kernel **Gating Function** • 32 960 patients' Therapy Change Episode (TCE) and clinical data • 312 most frequently occurring drug combinations • Genotype resistance data from *Pol* and *Env* regions [2]. We propose a **Mixture-of-Experts** (MoE) model to overcome this. **Goal:** Automatic optimal therapy selection **The History Alignment Kernel** Patients with similar treatment histories respond similarly. • Alignment of therapies [1]: The viral genome. $\overline{|^2, ||u_{z'g}||^2)}$ Experiments Alignment of therapy sequences with Needleman Wunsch. **Doubly Robust** TS1 T1 T2 T3 T4 Short-term Alignment 2.17 ±1.47 More common drugs/mutations \implies more similar TS2 T1 T2 — T3 Long-term Alignment 9.48 ± 1.90 treatments. Seq 1 ... Seq n Better alignment \implies more similar histories. Seq POMDP 6.34 ± 2.15 11.47 ± 1.38 MoE

$$k(z, z') = \sum_{g \in G} \frac{\sin_g(z, z')}{|G|}; \quad \sin_g(z, z') = \frac{u_{zg}^\top u_{zg}}{\max(||u_{zg}||)}$$

Truncated MoE

Short-Term Therapy Success: Viral RNA < 400 copies/mL

Combining Kernel and Model-Based Reinforcement Learning for HIV Therapy Selection

Sonali Parbhoo¹, Jasmina Bogojeska², Volker Roth¹ and Finale Doshi-Velez³

Department of Mathematics and Computer Science, University of Basel, Switzerland¹ IBM Research, Zurich, Switzerland² Harvard University, John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA.³

Long-Term Therapy Success

Off-policy evaluation for therapy selection models.

 $4.61~\pm~2.35$

IS	Weighted IS
$2.14 \ \pm 1.22$	2.15 ± 1.16
5.42 ± 1.93	6.74 ± 1.89
$4.36~\pm~2.38$	$6.76~\pm~2.24$
$\textbf{12.25}~\pm~\textbf{1.41}$	$11.23~\pm~1.40$
4.73 ± 2.49	$4.71~\pm~2.18$

- 74%.
- learned policy.

When does the Mixture-of-Experts pick each model?

Feature importance for Mixture-of-Experts.

- specificity.
- Mixture-of-Experts yields best policies.
- Expert chosen based on clustering characteristics.

Acknowledgement: We thank the Swiss National Science Foundation for financial support and EuResist Integrated Database for providing the data used in this research.

• Mixture-of-Experts selects therapy policy over 5 year horizon. • Mixture-of-Experts chooses the POMDP 26% vs. the Long-Term Alignment

Off-policy evaluation corrects distributional mismatch between data policy and

Mixture-of-Experts model choice over a) distances to closest neighbour b) history lengths.

Conclusions

• Mixture-of-experts addresses trade-off between model generality and

• **Different policies** produced when optimising over long-term vs. short-term.

References

[1] Jasmina Bogojeska, Daniel Stöckel, Maurizio Zazzi, Rolf Kaiser, Francesca Incardona, Michal Rosen-Zvi, and Thomas Lengauer. History-alignment models for [2] Annemarie M Wensing, Vincent Calvez, Huldrych F Günthard, Victoria A Johnson, Roger Paredes, Deenan Pillay, Robert W Shafer, and Douglas D Richman. Special

bias-aware prediction of virological response to hiv combination therapy. In AISTATS, pages 118-126, 2012.

contribution 2014 update of the drug resistance mutations in hiv-1. Topics in antiviral medicine, page 642, 2014.