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Motivation

Human Immunodeficiency Virus (HIV) infects immune cells and causes AIDS. The
virus is highly mutagenic, so choosing a therapy is difficult.

Combination therapy is prescribed to overcome drug resistance. Existing ther-
apy selection approaches based on regression are problematic:
•Do not account for long-term effects of therapies.
•Do not account for patient heterogeneity.

Trade-off between model generality vs specificity.

We propose a Mixture-of-Experts (MoE) model to overcome this.
Goal: Automatic optimal therapy selection

The History Alignment Kernel

Patients with similar treatment histories respond similarly.

•Alignment of therapies [1]:

k(z, z′) =
∑
g∈G

simg(z, z′)
|G|

; simg(z, z′) =
u>zguz′g

max(||uzg||2, ||uz′g||2)

•Alignment of therapy sequences with Needleman Wunsch.

More common drugs/mutations =⇒ more similar
treatments.
Better alignment =⇒ more similar histories.

Short-Term Therapy Success:
Viral RNA < 400 copies/mL

•Compute logistic regression against short-term success [1].

Long-Term Therapy Success

• Immediate reward criterion:

rt =

−0.7 log Vt + 0.6 log Tt − 0.2|M |, if Vt is above detection limits
5 + 0.6 log Tt − 0.2|M |, otherwise

Long-term success sums criterion over patient’s future history.

Bayesian POMDP

Models sequential decision-making explicitly.
• 6 month time increments
• 7 hidden physiological states; 70 mutations and binned viral RNA values
•Transition and observation parameters drawn from Dirichlet
• Sample m models and update beliefs accordingly.

How do we know what action to choose?
•Build forward search tree: Search therapies to optimise outcomes over 5 years.
•Evaluate policies with off-policy evaluation.

Data

• 32 960 patients’ Therapy Change Episode (TCE) and clinical data
• 312 most frequently occurring drug combinations
•Genotype resistance data from Pol and Env regions [2].

2.1.3 HIV Replication Cycle

1.5

The viral genome.

Experiments

Doubly Robust IS Weighted IS
Short-term Alignment 2.17 ±1.47 2.14 ±1.22 2.15 ±1.16
Long-term Alignment 9.48 ± 1.90 5.42 ± 1.93 6.74 ± 1.89

POMDP 6.34 ± 2.15 4.36 ± 2.38 6.76 ± 2.24
MoE 11.47 ± 1.38 12.25 ± 1.41 11.23 ± 1.40

Truncated MoE 4.61 ± 2.35 4.73 ± 2.49 4.71 ± 2.18
Off-policy evaluation for therapy selection models.

•Mixture-of-Experts selects therapy policy over 5 year horizon.
•Mixture-of-Experts chooses the POMDP 26% vs. the Long-Term Alignment
74%.

•Off-policy evaluation corrects distributional mismatch between data policy and
learned policy.

When does the Mixture-of-Experts pick each model?

Feature importance for Mixture-of-Experts.
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Mixture-of-Experts model choice over a) distances to closest neighbour b)
history lengths.

Conclusions

•Mixture-of-experts addresses trade-off between model generality and
specificity.

•Different policies produced when optimising over long-term vs. short-term.
•Mixture-of-Experts yields best policies.
•Expert chosen based on clustering characteristics.
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