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Motivation Long-Term Therapy Success - Mixture-of-Experts selects therapy policy over 5 year horizon.
_ = Mixture-of-Experts chooses the POMDP 26% vs. the Long-Term Alignment
Human Immunodeficiency Virus (HIV) infects immune cells and causes AIDS. The . L 0 P o © ©
o | | R » Immediate reward criterion: 74%.
virus is highly mutagenic, so choosing a therapy is difficult. r | | S
O i 7 e —0.7log V; + 0.6log T; — 0.2| M|, if V; is above detection limits = Off-policy evaluation corrects distributional mismatch between data policy and
TN s < t 5+ 0.6log Ty — 0.2|M], otherwise learned policy.

When does the Mixture-of-Experts pick each model?

Long-term success sums criterion over patient’s future history.

Quantile distance

History Length

Combination therapy is prescribed to overcome drug resistance. Existing ther-
apy selection approaches based on regression are problematic: Bayesian POMDP .
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» Do not account for long-term effects of therapies.
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- Do not account for patient heterogeneity. Models sequential decision-making explicitly. ; 2 4 : 8

Mean Decrease Accuracy

= 6 month time increments

Trade-off between model generality VS SpECifiCity. = [ hidden physio|ogica| states: 70 mutations and binned viral RNA values Feature Importance for I\/Iixture—of—Experts.
X l « Transition and observation parameters drawn from Dirichlet
o1 T B R R « Sample m models and update beliefs accordingly. . ; ]
Ts2 [11 ] {20 — Sl N [ How do we know what action to choose? | ]
e ) = 3 simg(2,2) | || ( = Build forward search tree: Search therapies to optimise outcomes over 5 years. i _ ;
e |Gl % s o » Evaluate policies with off-policy evaluation. :
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= 32960 patients’ Therapy Change Episode (TCE) and clinical data ?
y « 312 most frequently occurring drug combinations gl S T

MoE Model Choice MoE Model Choice

- | - ' from Pol and Env regions [2]
We propose a Mixture-of-Experts (MoE) model to overcome this. Genotype resistance data from Pol and Env regions |2]

Goal: Automatic optimal therapy selection o Mixture-of-Experts model choice over a) distances to closest neighbour b)
. i m T - - Dl history lengths.
The History Alignment Kernel . _
e = e T T Conclusions
Patients with similar treatment histories respond similarly. — —/ \-\m
. Alignment of therapies [1] The viral genome » Mixture-of-experts addresses trade-off between model generality and
. , T | specificity.
k(z,2))=>" sim(2,2) sim,(z,2') = Pz 20 Different policies produced when optimising over long-term vs. short-term
y T ) g ’ T 2 9 E - tS - - . - .
|G max(|[wzg|[%, |[wsrgl|?) xperimen . | .
9c | » Mixture-of-Experts yields best policies.
- - » Expert chosen based on clustering characteristics.
« Alignment of therapy sequences with Needleman Wunsch. Doubly Robust IS Weighted IS
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Short-Term Therapy Success:
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Off-policy evaluation for therapy selection models.



